左行右列定理是线性代数中矩阵乘法的一条运算定理,适用于乘式中有初等矩阵的时候。
其内容用文字表述为:如果矩阵A左(右)乘一个初等矩阵,那么相当于对A做了一次和它完全相同的初等行(列)变换。
左行右列定理意义:
在矩阵乘法中,如果其中一个矩阵是初等矩阵,则可以通过左行右列定理绕开乘积运算,仅通过一次初等行(列)变换即可,简化了左(右)乘初等矩阵的计算量。
在解例如AX=B的矩阵方程时,解决了当矩阵A不是可逆矩阵时的求解问题。
左行右列定理是线性代数中矩阵乘法的一条运算定理,适用于乘式中有初等矩阵的时候。
其内容用文字表述为:如果矩阵A左(右)乘一个初等矩阵,那么相当于对A做了一次和它完全相同的初等行(列)变换。
左行右列定理意义:
在矩阵乘法中,如果其中一个矩阵是初等矩阵,则可以通过左行右列定理绕开乘积运算,仅通过一次初等行(列)变换即可,简化了左(右)乘初等矩阵的计算量。
在解例如AX=B的矩阵方程时,解决了当矩阵A不是可逆矩阵时的求解问题。