利用新定理,把多元高次方程组快速变成一元方程
如何快速把高次方程组变成一元高次方程式呢?这是中国民间科学研究的重大成就,就是利用民间研究出的同解方程判别定理,直接导入快速消元,这里必须要介绍一下同解方程判别定理。
什么是同解方程判别定理呢?
指任意二个一元高次方程之间,如果它俩系数之间存在一个固定函数关系,它们必为同解方程。这个固定函数关系可通过韦达定理推算出来,推导过程说明如下:
如何推出验证二方程是否为同解方程的判别式来呢,我是这样做的,假设其中一个方程的所有根分别为未知数X1,X2,X3等等把这些未知根分别代入到另一方程等式左边,每个未知根代入的情况当成一个因式,各因式相乘再展开,展开后,把它们按阿贝尔族形式的分类排列,再通过韦达定理根与系数的关系,将未知根X1,X2,X3等等全部换算成方程的系数已知数,这样系数组成的判别式就出来了,判别式等于零时,二个方程必是同解方程。否则必不是同解方程。
如何应用这个定理把多元方程组快速消成一元方程呢?
我们可以通过韦达定理先把各类验证二种一元方程式有同解的代数判别式都推算出,列成一系列永久性的词典型代数式,供方程组快速消元用,在方程组各式中每式都选同一个未知数,把每一式都看成是这个未知数的有同解的一元方程,而其他未知数都看成是那个未知数的系数,这样每二式都写出判别式等于零的方程,而判别式等于零的方程,自然不再含选中的未知数,达到消元目的。如此继续一直用此法做下去,最后变成一元高次方程