成语大全网 - 成语解释 - 欧拉公式的证明

欧拉公式的证明

欧拉公式的证明如下:

欧拉公式证明是:R+ V- E= 2。

拓扑学中,在任何一个规则球面地图上,用R记区域个数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理,于1640年由 Descartes首先给出证明 ,后来 Euler欧拉于 1752年又独立地给出证明 ,称其为欧拉定理 ,在国外也有人称其为 Descartes定理。

1、当R=2时,由说明1,这两个区域可想象为以赤道为边界的两个半球面,赤道上有两个“顶点”将赤道分成两条“边界”,即R=2,V=2,E=2;于是R+V-E=2,欧拉定理成立。

2、设R=m(m≥2)时欧拉定理成立,下面证明R=m+1时欧拉定理也成立。

由说明2,我们在R=m+1的地图上任选一个区域X,则X必有与它如此相邻的区域Y,使得在去掉X和Y之间的唯一一条边界后,地图上只有m个区域了。

在去掉X和Y之间的边界后,若原该边界两端的顶点现在都还是3条或3条以上边界的顶点。

则该顶点保留,同时其他的边界数不变;若原该边界一端或两端的顶点现在成为2条边界的顶点,则去掉该顶点,该顶点两边的两条边界便成为一条边界。于是,在去掉X和Y之间的唯一一条边界时只有三种情况:

1、减少一个区域和一条边界。

2、减少一个区域、一个顶点和两条边界。

3、减少一个区域、两个顶点和三条边界。

把复指数函数与三角函数联系起来的一个公式,e是自然对数的底,i是虚数单位。它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它不仅出现在数学分析里,而且在复变函数论里也占有非常重要的地位,更被誉为“数中的天桥”。