成语大全网 - 成语解释 - 用C++设计一个小型的英汉词典

用C++设计一个小型的英汉词典

字典最快速的实现方法是trie tree。

这个树是专门用来实现字典的。但是trie tree的删除操作比较麻烦。用二叉查找树可以实现,速度也可以很快。AVL tree只不过是平衡的二叉树,在字典这个应用上没有客观的速度提升,因为字典不会产生极端化的二叉树(链表)。

下面是我的二叉查找树的代码。二叉查找树的优点是实现容易,而且它的inorder traverse既是按照字母顺序的输出。

//binary search tree, not self-balancing

//by Qingxing Zhang, Dec 28,2009. prep for google interview

#include <iostream>

using namespace std;

struct BST

{

int data;

BST *left;

BST *right;

};

//runtime: O(logn) on average, O(n) worst case

bool search(BST *&root, int key)//return false if the key doesn't exist

{

if(root==NULL)

return false;

if(key < root->data)

return search(root->left,key);

else if(key > root->data)

return search(root->right,key);

else

return true;

}

//runtime: O(logn)on average, O(n) worst case

bool insert(BST *&root, int key)//return false if the key already exists

{

if(root==NULL)

{

BST *node = new BST;

node->data = key;

node->left = node->right = NULL;

root = node;

return true;

}

else if(key < root->data)

return insert(root->left,key);

else if(key > root->data)

return insert(root->right,key);

else

return false;

}

//runtime:O(logn) on average, O(n) worst case

bool remove(BST *&root,int key)//return false if the key doesn't exist.

{

if(root==NULL)//no such key

return false;

else if(key < root->data)

return remove(root->left,key);

else if(key > root->data)

return remove(root->right,key);

else//node found

{

if((root->left==NULL)&&(root->right==NULL))//no child(leaf node)

{

BST *tmp = root;

root = NULL;

delete tmp;

}

else if((root->left==NULL)||(root->right==NULL))//one child

{

BST *tmp = root;

if(root->left==NULL)

root = root->right;

else

root = root->left;

delete tmp;

}

else//two children:replace node value with inorder successor and delete that node

{

BST *tmp = root->right;

while(tmp->left!=NULL)

tmp = tmp->left;

int tmpdata = tmp->data;

remove(root,tmpdata);

root->data = tmpdata;

}

return true;

}

}

//runtime:O(n)

void inorder(BST *&node)

{

if(node!=NULL)

{

inorder(node->left);

cout << node->data << " ";

inorder(node->right);

}

}

//runtime:O(n)

void preorder(BST *&node)

{

if(node!=NULL)

{

cout << node->data << " ";

preorder(node->left);

preorder(node->right);

}

}

//runtime:O(n)

void postorder(BST *&node)

{

if(node!=NULL)

{

postorder(node->left);

postorder(node->right);

cout << node->data << " ";

}

}

int main()

{

bool b;

BST *root = NULL;

b = insert(root,1);

b = insert(root,3);

b = insert(root,7);

b = insert(root,5);

b = insert(root,77);

b = insert(root,10);

b = insert(root,4);

b = insert(root,13);

//inorder

cout << "In-order:";

inorder(root);

cout << endl;

//preorder

cout << "Pre-order:";

preorder(root);

cout << endl;

//postorder

cout << "Post-order:";

postorder(root);

cout << endl;

// search for 7

if(search(root,7))

cout << "7 found!" << endl;

else

cout << "7 doesn't exist!" << endl;

b = remove(root,7);

cout << "----------------" << endl;

//inorder

cout << "In-order:";

inorder(root);

cout << endl;

//preorder

cout << "Pre-order:";

preorder(root);

cout << endl;

//postorder

cout << "Post-order:";

postorder(root);

cout << endl;

if(search(root,7))

cout << "7 found!" << endl;

else

cout << "7 doesn't exist!" << endl;

return 0;

}