成语大全网 - 汉语词典 - MD5是如何编译的?

MD5是如何编译的?

MD5简介

MD5的全称是Message-Digest Algorithm 5,在90年代初由MIT的计算机科学实验室和RSA Data Security Inc发明,经MD2、MD3和MD4发展而来。

Message-Digest泛指字节串(Message)的Hash变换,就是把一个任意长度的字节串变换成一定长的大整数。请注意我使用了“字节串”而不是“字符串”这个词,是因为这种变换只与字节的值有关,与字符集或编码方式无关。

MD5将任意长度的“字节串”变换成一个128bit的大整数,并且它是一个不可逆的字符串变换算法,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。

MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。

MD5还广泛用于加密和解密技术上,在很多操作系统中,用户的密码是以MD5值(或类似的其它算法)的方式保存的,用户Login的时候,系统是把用户输入的密码计算成MD5值,然后再去和系统中保存的MD5值进行比较,而系统并不“知道”用户的密码是什么。

一些黑客破获这种密码的方法是一种被称为“跑字典”的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。

即使假设密码的最大长度为8,同时密码只能是字母和数字,***26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘组,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。

在很多电子商务和社区应用中,管理用户的Account是一种最常用的基本功能,尽管很多Application Server提供了这些基本组件,但很多应用开发者为了管理的更大的灵活性还是喜欢采用关系数据库来管理用户,懒惰的做法是用户的密码往往使用明文或简单的变换后直接保存在数据库中,因此这些用户的密码对软件开发者或系统管理员来说可以说毫无保密可言,本文的目的是介绍MD5的Java Bean的实现,同时给出用MD5来处理用户的Account密码的例子,这种方法使得管理员和程序设计者都无法看到用户的密码,尽管他们可以初始化它们。但重要的一点是对于用户密码设置习惯的保护。

有兴趣的读者可以从这里取得MD5也就是RFC 1321的文本。 .ibm.com/developerWorks/java/jw-tips/tip106/index.shtml

这里讲述了把测试和示例代码放在一个内部静态类的好处,是一种不错的工程化技巧和途径。

把Java Bean装到JSP里

正如我们在本文开头讲述的那样,我们对这个MD5 Bean的应用是基于一个用户管理,这里我们假设了一个虚拟社区的用户login过程,用户的信息保存在数据库的个名为users的表中。这个表有两个字段和我们的这个例子有关,userid :char(20)和pwdmd5 :char(32),userid是这个表的Primary Key,pwdmd5保存密码的MD5串,MD5值是一个128bit的大整数,表示成16进制的ASCII需要32个字符。

这里给出两个文件,login.html是用来接受用户输入的form,login.jsp用来模拟使用MD5 Bean的login过程。

为了使我们的测试环境简单起见,我们在JSP中使用了JDK内置的JDBC-ODBC Bridge Driver,community是ODBC的DSN的名字,如果你使用其它的JDBC Driver,替换掉login.jsp中的

Connection con= DriverManager.getConnection("jdbc:odbc:community", "", "");

即可。

login.jsp的工作原理很简单,通过post接收用户输入的UserID和Password,然后将Password变换成MD5串,然后在users表中寻找UserID和pwdmd5,因为UserID是users表的Primary Key,如果变换后的pwdmd5与表中的记录不符,那么SQL查询会得到一个空的结果集。

这里需要简单介绍的是,使用这个Bean只需要在你的JSP应用程序的WEB-INF/classes下建立一个beartool目录,然后将MD5.class拷贝到那个目录下就可以了。如果你使用一些集成开发环境,请参考它们的deploy工具的说明。在JSP使用一个java Bean关键的一句声明是程序中的第2行:

<jsp:useBean id='oMD5' scope='request' class='beartool.MD5'/>

这是所有JSP规范要求JSP容器开发者必须提供的标准Tag。

id=实际上是指示JSP Container创建Bean的实例时用的实例变量名。在后面的<%和%>之间的Java程序中,你可以引用它。在程序中可以看到,通过 pwdmd5=oMD5.getMD5ofStr (password)引用了我们的MD5 Java Bean提供的唯一一个公***方法: getMD5ofStr。

Java Application Server执行.JSP的过程是先把它预编译成.java(那些Tag在预编译时会成为java语句),然后再编译成.class。这些都是系统自动完成和维护的,那个.class也称为Servlet。当然,如果你愿意,你也可以帮助Java Application Server去干本该它干的事情,自己直接去写Servlet,但用Servlet去输出HTML那简直是回到了用C写CGI程序的恶梦时代。

如果你的输出是一个复杂的表格,比较方便的方法我想还是用一个你所熟悉的HTML编辑器编写一个“模板”,然后在把JSP代码“嵌入”进去。尽管这种JSP代码被有些专家指责为“空心粉”,它的确有个缺点是代码比较难管理和重复使用,但是程序设计永远需要的就是这样的权衡。我个人认为,对于中、小型项目,比较理想的结构是把数据表示(或不严格地称作WEB界面相关)的部分用JSP写,和界面不相关的放在Bean里面,一般情况下是不需要直接写Servlet的。

如果你觉得这种方法不是非常的OO(Object Oriented),你可以继承(extends)它一把,再写一个bean把用户管理的功能包进去。

到底能不能兼容?

我测试了三种Java应用服务器环境,Resin 1.2.3、Sun J2EE 1.2、IBM WebSphere 3.5,所幸的是这个Java Bean都没有任何问题,原因其实是因为它仅仅是个计算程序,不涉及操作系统,I/O设备。其实用其它语言也能简单地实现它的兼容性的,Java的唯一优点是,你只需提供一个形态的运行码就可以了。请注意“形态”二字,现在很多计算结构和操作系统除了语言本身之外都定义了大量的代码形态,很简单的一段C语言核心代码,转换成不同形态要考虑很多问题,使用很多工具,同时受很多限制,有时候学习一种新的“形态”所花费的精力可能比解决问题本身还多。比如光Windows就有EXE、Service、的普通DLL、COM DLL以前还有OCX等等等等,在Unix上虽说要简单一些,但要也要提供一个.h定义一大堆宏,还要考虑不同平台编译器版本的位长度问题。我想这是Java对我来说的一个非常重要的魅力吧。

MD5算法说明

一、补位

二、补数据长度

三、初始化MD5参数

四、处理位操作函数

五、主要变换过程

六、输出结果

补位:

MD5算法先对输入的数据进行补位,使得数据位长度LEN对512求余的结果是448。即数据扩展至K*512+448位。即K*64+56个字节,K为整数。

具体补位操作:补一个1,然后补0至满足上述要求。

补数据长度:

用一个64位的数字表示数据的原始长度B,把B用两个32位数表示。这时,数

据就被填补成长度为512位的倍数。

初始化MD5参数:

四个32位整数 (A,B,C,D) 用来计算信息摘要,初始化使用的是十六进制表

示的数字

A=0X01234567

B=0X89abcdef

C=0Xfedcba98

D=0X76543210

处理位操作函数:

X,Y,Z为32位整数。

F(X,Y,Z) = X&Y|NOT(X)&Z

G(X,Y,Z) = X&Z|Y?(Z)

H(X,Y,Z) = X xor Y xor Z

I(X,Y,Z) = Y xor (X|not(Z))

主要变换过程:

使用常数组T[1 ... 64], T[i]为32位整数用16进制表示,数据用16个32位

的整数数组M[]表示。

具体过程如下:

/* 处理数据原文 */

For i = 0 to N/16-1 do

/*每一次,把数据原文存放在16个元素的数组X中. */

For j = 0 to 15 do

Set X[j] to M[i*16+j].

end /结束对J的循环

/* Save A as AA, B as BB, C as CC, and D as DD.

*/

AA = A

BB = B

CC = C

DD = D

/* 第1轮*/

/* 以 [abcd k s i]表示如下操作

a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3

22 4]

[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7

22 8]

[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA

11 22 12]

[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15]

[BCDA 15 22 16]

/* 第2轮* */

/* 以 [abcd k s i]表示如下操作

a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA

0 20 20]

[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23]

[BCDA 4 20 24]

[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA

8 20 28]

[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA

12 20 32]

/* 第3轮*/

/* 以 [abcd k s i]表示如下操作

a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35]

[BCDA 14 23 36]

[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA

10 23 40]

[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43]

[BCDA 6 23 44]

[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47]

[BCDA 2 23 48]

/* 第4轮*/

/* 以 [abcd k s i]表示如下操作

a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51]

[BCDA 5 21 52]

[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55]

[BCDA 1 21 56]

[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59]

[BCDA 13 21 60]

[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63]

[BCDA 9 21 64]

/* 然后进行如下操作 */

A = A + AA

B = B + BB

C = C + CC

D = D + DD

end /* 结束对I的循环*/

输出结果。