智能检索或知识检索
传统的全文检索技术基于关键词匹配进行检索,往往存在查不全、查不准、检索质量不高的现象,特别是在网络信息时代,利用关键词匹配很难满足人们检索的要求。智能检索利用分词词典、同义词典,同音词典改善检索效果,比如用户查询“计算机”,与“电脑”相关的信息也能检索出来;进一步还可在知识层面或者说概念层面上辅助查询,通过主题词典、上下位词典、相关同级词典,形成一个知识体系或概念网络,给予用户智能知识提示,最终帮助用户获得最佳的检索效果,比如用户可以进一步缩小查询范围至“微机”、“服务器”或扩大查询至“信息技术”或查询相关的“电子技术”、“软件”、“计算机应用”等范畴。另外,智能检索还包括歧义信息和检索处理,如“苹果”,究竟是指水果还是电脑品牌,“华人”与“中华人民***和国”的区分,将通过歧义知识描述库、全文索引、用户检索上下文分析以及用户相关性反馈等技术结合处理,高效、准确地反馈给用户最需要的信息。知识挖掘
主要指文本挖掘技术的发展,目的是帮助人们更好的发现、组织、表示信息,提取知识,满足信息检索的高层次需要。知识挖掘包括摘要、分类(聚类)和相似性检索等方面。
自动摘要就是利用计算机自动地从原始文献中提取文摘。在信息检索中,自动摘要有助于用户快速评价检索结果的相关程度,在信息服务中,自动摘要有助于多种形式的内容分发,如发往PDA、手机等。相似性检索技术基于文档内容特征检索与其相似或相关的文档,是实现用户个性化相关反馈的基础,也可用于去重分析。自动分类可基于统计或规则,经过机器学习形成预定义分类树,再根据文档的内容特征将其归类;自动聚类则是根据文档内容的相关程度进行分组归并。自动分类(聚类)在信息组织、导航方面非常有用。
异构信息整合检索和全息检索
在信息检索分布化和网络化的趋势下,信息检索系统的开放性和集成性要求越来越高,需要能够检索和整合不同来源和结构的信息,这是异构信息检索技术发展的基点,包括支持各种格式化文件,如TEXT、HTML、XML、RTF、MS Office、PDF、PS2/PS、MARC、ISO2709等处理和检索;支持多语种信息的检索;支持结构化数据、半结构化数据及非结构化数据的统一处理;和关系数据库检索的无缝集成以及其他开放检索接口的集成等。所谓“全息检索”的概念就是支持一切格式和方式的检索,从实践来讲,发展到异构信息整合检索的层面,基于自然语言理解的人机交互以及多媒体信息检索整合等方面尚有待取得进一步突破。
另外,从工程实践角度,综合采用内存和外部存储的多级缓存、分布式群集和负载均衡技术也是信息检索技术发展的重要方面。
随着互联网的普及和电子商务的发展,企业和个人可获取、需处理的信息量呈爆发式增长,而且其中绝大部分都是非结构化和半结构化数据。内容管理的重要性日益凸现,而信息检索作为内容管理的核心支撑技术,随着内容管理的发展和普及,亦将应用到各个领域,成为人们日常工作生活的密切伙伴。