成语大全网 - 经典成语 - 膜泡运输的关键性蛋白

膜泡运输的关键性蛋白

SNAREs的作用是保证识别的特异性和介导运输小泡与目标膜的融合,动物细胞中已发现20多种SNAREs,分别分布于特定的膜上,位于运输小泡上的叫作v-SNAREs,位于靶膜上的叫作t-SNAREs。v-SNAREs和 t-SNAREs都具有一个螺旋结构域,能相互缠绕形成跨SNAREs复合体(trans-SNAREs complexes),并通过这个结构将运输小泡的膜与靶膜拉在一起,实现运输小泡特异性停泊和融合。实验证明包含了SNARE的脂质体和包含匹配SNARE的脂质体间可发生融合,尽管速度较慢。这说明除了SNARE之外,还有其他的蛋白参与运输泡与目的膜的融合。

在SNAREs介导新一轮的运输小泡停泊之前,SNAREs必须以分离的状态存在,NSF(N-ethylmaleimide-sensitive fusion protein, NSF)催化 SNAREs的分离,NSF是一种类似分子伴侣(分子伴娘)的ATP酶,能够利用ATP作为能量通过插入几个适配蛋白(adaptor protein)将SNAREs复合体的螺旋缠绕分开。

在神经细胞中SNAREs负责突触小泡的停泊和融合,破伤风毒素和肉毒素等细菌分泌的神经性毒素实际上是一类特殊的蛋白酶,能够选择性地降解SNAREs,从而阻断神经传导。

精卵的融合、成肌细胞的融合均涉及SNAREs,另外病毒融合蛋白的工作原理与SNAREs相似,介导病毒与宿主质膜的融合。 细胞的内吞可分为两类,批量内吞(Bulk-phase endocytosis)和受体介导的内吞(Receptor mediated endocytosis, RME)。

批量内吞是非特异性地摄入细胞外物质,如培养细胞摄入辣根过氧化物酶。细胞表面的内陷(caveolae)是发生非特异性内吞的部位。

受体介导的内吞作用是一种选择浓缩机制,既可保证细胞大量地摄入特定的大分子,同时又避免了吸入细胞外大量的液体。低密脂蛋白、运铁蛋白、生长因子、胰岛素等蛋白类激素、糖蛋白等,都是通过受体介导的内吞作用进行的。

衣被小窝(coated pits)是质膜向内凹陷的部位,约占肝细胞和成纤维细胞膜表面积的2%。受体大量集中于此处,凹陷的胞质侧具有大量的笼形蛋白和衔接蛋白,类似的结构也存在于高尔基体的TGN区。受体在衣被小窝处的集中与是否结合配体无关。衣被小窝就相当一个分子过滤器(molecular filter),帮助细胞获取所需要的大分子物质。

运输小泡的衣被中,除笼形蛋白外,还有衔接蛋白(adaptin)。它介于笼形蛋白与配体受体复合物之间,起连接作用。衔接蛋白存在有不同的种类,可分别结合不同类型的受体。

跨膜受体蛋白的胞质端有一个由4个氨基酸残基组成的序列(Tyr-X-X-Φ),此序列是发生内吞作用的信号,X表示任何一种氨基酸,Φ为分子较大的疏水氨基酸,如Phe、Leu、Met等,衔接蛋白对此序列有识别能力。

受体同配体结合后启动内化作用,笼形蛋白开始组装。在dynamin的作用下掐断后形成衣被小泡(coated vesicles)。衣被小泡进入胞质后,衣被蛋白随即脱去,分子返回到质膜下方,重又参与形成新的衣被小泡。其过程和高尔基体的TGN区形成溶酶体小泡的过程相似。

胆固醇主要在肝细胞中合成,随后与磷脂和蛋白质形成低密度脂蛋白(low-density lipoproteins,LDL),释放到血液中。LDL颗粒的质量为3X106Da,直径20~30nm,芯部含有大约1500个胆固醇分子,这些胆固醇分子被酯化成长链脂肪酸。芯部周围由一脂单层包围,脂单层包含磷脂分子和未酯化的胆固醇以及一个非常大的单链糖蛋白质 (apolipoprotein B-100),这个蛋白质分子可以和靶膜上的受体结合。

当细胞进行膜合成需要胆固醇时,细胞即合成LDL跨膜受体蛋白,并将其嵌插到质膜中。受体与LDL颗粒结合后,形成衣被小泡;进入细胞质的衣被小泡随即脱掉笼形蛋白衣被,成为平滑小泡,同早期内体融合,内体中PH值低,使受体与LDL颗粒分离;再经晚期内体将LDL送入溶酶体。在溶酶体中,LDL颗粒中的胆固醇酯被水解成游离的胆固醇而被利用。细胞对胆固醇的利用具有调节能力,当细胞中的胆固醇积累过多时,细胞即停止合成自身的胆固醇,同时也关闭了LDL受体蛋白的合成途径,暂停吸收外来的胆固醇。有的人因为LDL受体蛋白编码的基因有遗传缺陷,造成血液中胆固醇含量过高,因而会过早地患动脉粥样硬化症(atherosclerosis),这种人往往因易患冠心病而英年早逝。

在受体介导的内吞作用过程中,不同类型的受体具有不同的胞内体分选途径:①大部分受体返回它们原来的质膜结构域,如LDL受体又循环到质膜再利用;②有些受体不能再循环而是最后进入溶酶体,在那里被消化,如与表皮生长因子(epidermal growth factor,EGF)结合的细胞表面受体,大部分在溶酶体被降解,从而导致细胞表面EGF受体浓度降低,称为受体下行调节(receptor down-regulation);③有些受体被运至质膜不同的结构域,该过程称作穿胞运输(transcytosis)。在具有极性的上皮细胞,这是一种将内吞作用与外排作用相结合的物质跨膜转运方式,即转运的物质通过内吞作用从上皮细胞的一侧被摄人细胞,再通过外排作用从细胞的另一侧输出。如母鼠的抗体从血液通过上皮细胞进入母乳中,乳鼠肠上皮细胞将抗体摄人体内,都是通过跨细胞的转运完成的。 与细胞的内吞作用相反,外排作用是将细胞内的分泌泡或其他某些膜泡中的物质通过细胞质膜运出细胞的过程。

组成型的外排途径(constitutive exocytosis pathway):所有真核细胞都有从高尔基体TGN区分泌囊泡向质膜运输的过程,其作用在于更新膜蛋白和膜脂、形成质膜外周蛋白、细胞外基质、或作为营养成分和信号分子。

调节型外排途径(regulated exocytosis pathway):分泌细胞产生的分泌物(如激素、粘液或消化酶)储存在分泌泡内,当细胞在受到胞外信号刺激时,分泌泡与质膜融合并将内含物释放出去。调节型的外排途径存在于特化的分泌细胞。其蛋白分选信号存在于蛋白本身,由高尔基体TGN上特殊的受体选择性地包装为运输小泡。

组成型的外排途径通过default pathway完成蛋白质的转运过程。在粗面内质网中合成的蛋白质除了某些有特殊标志的蛋白驻留在ER或高尔基体中或选择性地进入溶酶体和调节性分泌泡外,其余的蛋白均沿着粗面内质网→高尔基体→分泌泡→细胞表面这一途径完成其转运过程。

[1]起源于同一祖先,在不同生物体中行使同一功能的基因,称为“直向同源物(Ortholog),同一生物体中同一基因复制而产生的多个蛋白质称为旁系同源物或横向同源物(Paralog)。