常用的概念、公式和定理
整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.
如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数..如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.
绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.
如:丨-丨=;丨3.14-π丨=π-3.14.
3.一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.
4.把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.
如:-40700=-4.07×105,0.000043=4.3×10-5.
5.被开方数的小数点每移动2位,算术平方根的小数点就向相同方向移动1位;被开方数的小数点每移动3位,立方根的小数点就向相同方向移动1位.
如:已知=0.4858,则=48.58;已知=1.558,则=0.1588.
6.整式的乘除法:
①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.
②单项式乘以多项式,用单项式乘以多项式的每一个项.
③多项式乘以多项式,用一个多项式的每一项分别乘以另一个多项式的每一项.
④多项式除以单项式,将多项式的每一项分别除以这个单项式.
7.幂的运算性质:
am×an=am+n.
am÷an=am-n.
(am)n=amn.
(ab)n=anbn.
()n=n.
a-n=n,特别:()-n=()n.⑦a0=1(a≠0).
如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)0=1,(-)0=1.
8.乘法公式(反过来就是因式分解的公式):
①(a+b)(a-b)=a2-b2.
②(a±b)2=a2±2ab+b2.
③(a+b)(a2-ab+b2)=a3+b3.
④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.
9.选择因式分解方法的原则是:先看能否提公因式.在没有公因式的情况下:二项式用平方差公式或立方和差公式,三项式用十字相乘法(特殊的用完全平方公式),三项以上用分组分解法.注意:因式分解要进行到每一个多项式因式都不能再分解为止.
10.分式的运算:乘除法要先把分子、分母都分解因式,并颠倒除式,约分后相乘;加减法应先把分母分解因式,再通分(不能去分母).注意:结果要化为最简分式.
11.二次根式:
①()2=a(a≥0),
②=丨a丨,
③=×,
④=(a>0,b≥0).
如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.
12.一元二次方程:对于方程:ax2+bx+c=0:
求根公式是x=,其中=b2-4ac叫做根的判别式.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有个相等的实数根;当Δ<0时,方程没有实数根.注意:当Δ≥0时,方程有实数根.
若方程有两个实数根x1和x2,则
x1+x2=-,x1x2=,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).
③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.
13.解分式方程(去分母或换元)和无理方程(两边平方或换元)必须检验.形如:的方程组,用代入法解;形如:的方程组,先把一个方程分解为两个一次方程,再把这两个方程分别与另一个方程组合成两个方程组,再用代入法分别解这两个方程组.
14.不等式两边都乘以或除以同一个负数,不等号要改变方向.
15.平面直角坐标系:
①各限象内点的坐标如图所示.
②横轴(x轴)上的点,纵坐标是0;纵轴(y轴)上的点,横坐标是0.
③关于横轴对称的两个点,横坐标相同(纵坐标互为相反数);
关于纵轴对称的两个点,纵坐标相同(横坐标互为相反数);
关于原点对称的两个点,横坐标、纵坐标都互为相反数.
16.一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx又叫做正比例函数(y与x成正比例),图象必过原点.
17.反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(从左向右降);当k<0时,双曲线在二、四象限(从左向右上升).因此,它的增减性与一次函数相反.
18.二次函数y=ax2+bx+c(a≠0)的图象叫做抛物线(c是抛物线与y轴的交点的纵坐标).
a>0时,开口向上;a<0时,开口向下.
顶点坐标是(-,),对称轴是直线x=-.
特别:抛物线y=a(x-h)2+k的顶点坐标是(h,k),对称轴是直线x=h.
注意:求解析式的设法
①已知三个点的坐标,则设为一般形式y=ax2+bx+c;
②已知顶点坐标(h,k),则设为顶点式y=a(x-h)2+k;
③已知抛物线与x轴的两个交点坐标(x1,0)和(x2,0),则设为交点式y=a(x-x1)(x-x2).
19.抛物线与x轴的位置关系:对于抛物线y=ax2+bx+c
①Δ<0时,它与x没有交点.
②Δ=0时,它与x轴只有一个交点(与x轴相切).
③Δ>0时,它与x轴有两个交点(x1,0)和(x2,0),其中x1和x2是方程ax2+bx+c=0的两个根.
20.统计初步:(1)概念:
所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.
在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.
将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.
(2)公式:设有n个数x1,x2,…,xn,那么:
①平均数=(x1+x2+…+xn).
②方差S2=[(x1-)2+(x2-)2+…+(xn-)2.(是整数时用)
③S2=[(x12+x22+…+xn2)-n()2].注:各数据的数位较少或平均数是分数时,用此公式.
④若将n个数x1,x2,…,xn各减去一个适当的数a,得到一组新数x1,,x2,,…,xn,,那么原来那组数的方差S2=这组新数的方差,平均数=a+,.方差越大,这组数据的波动就越大.通常用样本方差去估计总体方差,用样本平均数去估计总体平均数.方差的算术平方根叫做标准差
(3)频率:①把一组数分成若干个小组,组距=(最大值-最小值)÷组数(求组数时,用收尾
法取整数),这时,落在某小组内的数据的个数叫做这组的频数,每一小组的频数与数据总
个数的比值叫做这一小组的频率.因此,各组的频率的和等于1.在频率分布直方图中,各小长方形的面积等于相应各组的频率.各小长方形的面积的和等于1.
21.锐角三角函数:
①设∠A是RtΔ的任一锐角,则∠A的正弦:sinA=,∠A的余弦:cosA=,∠A的正切:tanA=,∠A的余切:cotA=.
并且sinA=cosB,tgA=ctgB,tgActgA=1,sin2A+cos2A=1.0<sinA<1,0<cosA<1,tgA>0,ctgA>0.∠A越大,∠A的正弦和正切值越大,余弦和余切值反而越小.
②余角公式:sin(900-A)=cosA,cos(900-A)=sinA,tg(900-A)=ctgA,ctg(900-A)=tgA.
③特殊角的三角函数值:sin300=cos600=,sin450=cos450=,sin600=cos300=,sin00=
cos900=0,sin900=cos00=1,tg300=ctg600=,tg450=ctg450=1, tg600=ctg300=,tg00=ctg900=0.
④斜坡的坡度i==.设坡角为α,则i=tgα=.
22.三角形:
(1)在一个三角形中:等边对等角,等角对等边.
(2).证明两个三再形全等的方法有:SAS,AAS,ASA,SSS,HL.
(3)在RtΔ中,斜边上的中线等于斜边的一半.
(4)证明一个三角形是直角三角形的方法有:
①先证明有一个角等于900.
②先证明最长边的平方等于另两边的平方和.
③先证明一条边的中线等于这条边的一半.
④三角形的中位线平行于笫三边,并且等于笫三边的一半.
⑤等腰三角形中,顶角的平分线与底边上的中线和高互相重合.
23.四边形:
(1)n边形的内角和等于(n-2)1800,外角和等于3600.
(2)平行四边形的性质:对边平行且相等;对角相等;邻角互补;对角线互相平分.
(3)证明一个四边形是平行四边形的方法有:
①先证两组对边平行.
②先证两组对边相等.
③先证一组对边平行且相等.
④先证两条对角线互相平分.
⑤先证两组对角分别相等.
(4)矩形的对角线相等且互相平分;菱形的对角线互相垂直平分,并且四条边相等.
(5)证明一个四边形是矩形的方法有:
①先证明它有三个角是直角.
②先证它是平行四边形,再证它有一个角是直角或对角线相等.
(6)证明一个四边形是菱形的方法有:
①先证明它的四条边相等.
②先证它是平行四边形,再证它有一组邻边相等或对角线互相垂直.
(7)正方形既是矩形又是菱形,它具有矩形和菱形的所有性质.
(8)梯形的中位线平行于两底并且等于两底之和的一半.
(9)轴对称图形有:线段,角,等腰三角形,等腰梯形,矩形,菱形,正方形,正多边形,圆.
(10)中心对称图形有:线段,平行四边形,矩形,菱形,正方形,边数是偶数的正多边形,圆.
24.证明两个三角形相似的方法有:
先证两组对应角相等.
先证两边对应成比例并且夹角相等.
先证三边对应成比例.
先证斜边和一条直角边对应成比例.相似三角形的性质:对应高的比,对应角平分线的比,对应中线的比,周长的比,都等于相似比.面积的比等于相似比的平方.
25.平行切割定理:①如图1,DE∥BC=.
②如图2,若AB∥CD∥EF则=,=.
26.射影定理:如图3,ΔABC中,若∠ACB=900,
CD⊥AB,则:①AC2=AD·AB. ②BC2=BD·BA. ③AD2=DA·DB.
27.圆的有关性质:
(1)垂径定理:如果一条直线具备以下五个性质中的
任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;
⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.
注:具备①,③时,弦不能是直径.
(2)两条平行弦所夹的弧相等.
(3)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它所对应的其余三组量都分别相等.
(4)圆心角的度数等于它所对的弧的度数.
(5)一条弧所对的圆周角等于它所对的圆心角的一半.
(6)圆周角等于它所对的弧的度数的一半.
(7)弦切角等于它所夹的弧的度数的一半.
(8)同弧或等弧所对的圆周角相等.
(9)在同圆或等圆中,相等的圆周角所对的弧相等.
(10).900的圆周角所对的弦是直径.
(11)圆内接四边形的对角互补,外角等于它的内对角.
28.直线和圆的位置关系:
(1)若⊙O的半径为r,圆心到直线L的距离为d,则:
①d<r直线L和⊙O相交.
②d=r直线L和⊙O相切.
③d>r直线L和⊙O相离.
(2)切线的判定定理:经过半径外端并且垂直这条半径的直线是圆的切线.反之:切线垂直过切点的半径.
(3)切线长定理,弦切角定理,相交弦定理及其推论,切割线定理及其推论.
(4)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角平分线的交点.三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.
(5)RtΔ的内切圆的半径R内=,任意多边形的内切圆的半径R内=.
(6)圆外切四边形的一组对边的和等于另一组对边的和.
29.圆和圆的位置关系:
设两圆半径为R和r,圆心距为d,则:
①d>R+r两圆外离.
②d=R+r两圆外切.
③R-r<d<R+r(R≥r)两圆相交.
④d=R-r两圆内切.
⑤d<R-r两圆内含.
30.圆中常作的辅助线:
两圆相交,常作公***弦,连心线.
两圆相切,常作公切线,连心线.
已知切线,常过切点作半径.
已知直径,常作直径所对的圆周角.
求解有关弦的问题,作弦心距.
(6)弧的中点常和圆心连结.
31.各顶点等分圆周正n边形各边相等,各角相等,且每个内角=度,中心角=外角=度.
32.面积公式:
S正Δ=×(边长)2.
S平行四边形=底×高.
S菱形=底×高=×(对角线的积)
④S圆=πR2.
⑤C圆周长=2πR.
⑥弧长L=.
⑦S扇形==LR.
⑧S圆柱侧=底面周长×高.
⑨S圆锥侧=×底面周长×母线=πrR,并且2πr=(如上图).