数学思维书籍的话,下面推荐几本书,你可以看一下它们的简介,如果有感兴趣的话,可以去了解一下。
莫里斯·克莱因:《古今数学思想》
全书***三册,是数学史的经典名著。著作洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。大量第一手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是著名数学家的贡献,是全书的一大特色。
中国科学院院士李大潜这样评价:“本书通过对漫长而丰富多彩的数学历史的介绍,突出了古今数学思想及其发展脉络,抓住了核心和灵魂,对推动和吸引读者走近数学、品味数学、理解数学和热爱数学必将大有助益。”
波利亚:《怎样解题:数学思维的新方法》
这是国际著名数学家波利亚论述中学数学教学法的普及名著,对数学教育产生了深刻的影响。波利亚认为中学数学教育的根本宗旨是教会年轻人思考,他把“解题“作为培养学生数学才能和教会他们思考的一种手段和途径。
全书的核心是在分解解题思维过程中得到的一张“怎样解题”表。作者在书中引导学生按照“表”中的问题和建议思考问题,探索解题途径,进而逐步掌握解题过程的一般规律。书中还有一部“探索法小词典”,对解题过程中典型有用的智力活动做进一步解释。
艾格纳(MartinAigner) & 齐格勒:《数学天书中的证明
书中介绍了40个著名数学问题的极富创造性和独具匠心的证明。其中有些证明不仅想法奇特、构思精巧,作为一个整体更是天衣无缝。难怪,西方有些虔诚的数学家将这类杰作比喻为上帝的创造。这不是一本教科书,也不是一本专著,而是一本开阔数学视野和提高数学修养的著作。
西蒙·辛格:《费马大定理:一个困惑了世间智者358年的谜》
生动的故事和流畅的语言使《费马大定理:一个困惑了世间智者358年的谜》形神兼备。全书分两条主线,一条是历代数学家征服费马大定理的努力,另一条是费马大定理证明者怀尔斯的成长之路。其间穿插各位数学家的轶事,精彩纷呈。
高斯:《算术探索》
《算术研究》是被誉为“数学王子”的德国大数学家高斯的第一部杰作,该书写于1797年,1801年正式出版,这是一部用拉丁文写成的巨著,是数论的最经典及最具权威性的著作。
这部著作***七篇,由数的同余、一次同余方程、幂剩余、二次同余方程等构成,本书所探讨的内容是属于数学中研究整数的一部分,目的是介绍作者在高等算术领域所做的探讨。
此书简洁完美的风格多少减慢了它的传播速度,而最终当富有才华的年轻人开始深入研读它时,由于出版商的破产,又买不到它了,甚至高斯最喜欢的学生艾森斯坦从未能拥有一本,有些学生不得不从头到尾抄录全书。