SLAM是Simultaneous localization and mapping缩写,意为“同步定位与建图”,主要用于解决机器人在未知环境运动时的定位与地图构建问题。
Simultaneous Localization and Mapping (SLAM)原本是Robotics领域用来做机器人定位的,最早的SLAM算法其实是没有用视觉camera的(Robotics领域一般用Laser Range Finder来做SLAM)。
SLAM对实时性要求比较高,而要做到比较精确、稳定、可靠、适合多种场景的方案一般计算量相对较大,目前移动式设备的计算能力还不足够支撑这么大的计算量,为了达到实时性能,往往需要在精确度和稳定性上做些牺牲。
因此在具体的应用中,往往需要根据移动设备所具有的传感器组合、计算能力、用户场景等,选择和深度定制合适的SLAM算法。比如,无人驾驶汽车和手机端AR类应用的SLAM算法就非常不同。
SLAM的典型应用领域
机器人定位导航领域:地图建模。SLAM可以辅助机器人执行路径规划、自主探索、导航等任务。国内的科沃斯、塔米以及最新面世的岚豹扫地机器人都可以通过用SLAM算法结合激光雷达或者摄像头的方法,让扫地机高效绘制室内地图,智能分析和规划扫地环境,从而成功让自己步入了智能导航的阵列。
VR/AR方面:辅助增强视觉效果。SLAM技术能够构建视觉效果更为真实的地图,从而针对当前视角渲染虚拟物体的叠加效果,使之更真实没有违和感。VR/AR代表性产品中微软Hololens、谷歌ProjectTango以及MagicLeap都应用了SLAM作为视觉增强手段。
无人机领域:地图建模。SLAM可以快速构建局部3D地图,并与地理信息系统(GIS)、视觉对象识别技术相结合,可以辅助无人机识别路障并自动避障规划路径,曾经刷爆美国朋友圈的Hovercamera无人机,就应用到了SLAM技术。
无人驾驶领域:视觉里程计。SLAM技术可以提供视觉里程计功能,并与GPS等其他定位方式相融合,从而满足无人驾驶精准定位的需求。例如,应用了基于激光雷达技术Google无人驾驶车以及牛津大学MobileRoboticsGroup11年改装的无人驾驶汽车野猫(Wildcat)均已成功路测。
以上内容参考:slam路径规划算法 - CSDN