成语大全网 - 汉语词典 - 系统结构设计

系统结构设计

一、用户需求分析

全面深入地了解掌握用户需求是作出一个优良的系统设计的关键,也是系统生命力的保证。在需求分析阶段,系统设计者应当完全确定用户的工作范围与流程。据此,确定系统的全部数据及相应处理,绘出系统数据流图,从而产生整个评价系统的逻辑模型。

针对地质灾害灾情评估的特点,可以归纳为五个方面的需求,即:①数据维护;②物理系统(孕灾环境危险性)分析;③社会经济系统(承灾区易损性)分析;④风险分析;⑤防治效益评价。

二、设计需求

1.地质灾害系统自组织体系

地质灾害系统作为一个开放的自组织体系,在内外界持续干扰的作用下,该体系形成涨落,从而体系状态发生质变,形成一种更加稳定有序的结构。地质灾害系统是由孕灾环境、致灾因子与承灾体***同组成的地球表层变异系统。灾情则是这一体系涨落作用的产物。

2.系统硬软件环境的选择

(1)各种与IBM兼容的PC机(需带有80387浮点运算器),1兆以上内存,100兆以上硬盘,VGA以上彩色图形显示器(卡)。

(2)输入、输出设备,包括分辨率为0.1×0.1(mm)、带有国际标准数据交换格式的扫描仪(便于弧段跟踪、数据矢量化处理和数据格式转换),CALCOMP、HP系列或与之兼容的数字化仪和绘图仪。

(3)软件环境

系统采用美国环境系统研究所(ESRI)研制的PC版ARC/INFO(V3.4-PLUS)系统为基础软件。该系统是两个系统的结合,即描述地图特征和拓扑关系的ARC系统和记录属性数据的关系型数据管理INFO系统。这种混和数据模型兼顾了空间数据和非空间数据两种不同性质的数据特点,便于有效地管理这两种基本的空间数据:描述空间坐标的点、线、面特征和拓扑结构数据以及这些特性的属性数据。

3.数据库的组织结构

计算机作业较之于手工作业,在其精确度、可靠性方面具有很大的优越性。但这一切基于一个先决条件,那便是数据源的准确性。地质灾害风险评价系统涉及到的数据源较复杂,既包括自然物理数据,又包含社会经济发展数据。根据这些数据特点分为:属性库、图形库和图像库三类数据库。通过分析评价区内各灾种成灾特点、社会经济构成,收集各类数据源的数据,评价其精确度、可靠性、可利用性及相互关系,确定入库的数据项,并给出各数据项的详细定义,编辑数据词典。在各相关数据库之间建立公***特征码字段,将有助于提高数据的检索查询效率。根据系统的基本要求和地质灾害的基本规律,系统数据库组织如下:

图9-1 GDRES数据库组织图

4.系统总体设计

地质灾害灾情评估系统是一类专业性的地理信息系统。其总体结构可作如下划分(图9-2):

系统运行时,用户在应用子系统中工作,由应用子系统调用系统功能模块从而完成对系统数据的处理。

用户应用子系统是系统的用户界面。此层的缺失或划分不当,系统的用户友好性无从谈起。一般而言,应用子系统对应于用户某一需求的***同作业,此层面的设计与划分一定要从用户需求出发,面向地质灾害灾情评估的实际工作程序,以系统数据流图为基础进行。

图9-2 系统总体设计图

应用子系统建立在对系统功能模块的调用基础之上。系统功能模块可由支撑软件直接提供。许多支撑软件虽然功能强大,但一般都是从通用性入手考虑,具体到某一类专业应用系统,开发者仍具有一定工作量的二次开发任务,需要对系统功能模块进行扩充以满足特定需求。这类功能扩充定义又来源于上层应用子系统的操作分解,从中抽象出多个子系统中***同的操作,在此基础上开发扩充功能模块满足应用子系统的操作并优化系统整体结构。

5.GDRES结构

(1)系统组织结构的设计 从实用性入手,系统组织结构必须面向实际工作内容。为此,我们结合DBMS和GIS设计的概念和原理,将系统分为如下图所示的三个层次的七个子系统:①孕灾区灾害分布分析;②孕灾区危险程度分析;③承灾区受损范围分析;④承灾区价值易损性分析;⑤灾害发生概率分析;⑥灾害强度分析;⑦灾害风险分析。灾害强度是综合考虑孕灾区危险性强度及承灾区价值易损性的结果,灾害风险分析则建立在对中间层两因素的综合分析之上。

图9-3 GDRES组织结构图

(2)系统功能结构设计 我们以属性数据库、空间数据库为基础,设计出面向灾害风险分析的用户应用子系统。各应用子系统都具有以下功能模块,其中包括属性数据库维护、空间数据库维护、数据检索查询、统计查询、矩阵判断、空间分析模块。所有模块以GIS、DMBS类软件支撑并根据面向任务扩展产生。模块处理结果用文本、报表及图件三种方式输出,为地质灾害的管理和防治提供决策依据。

系统功能结构图如下:

图9-4 GDRES功能结构图